
Using Simulation To Solve The Vehicle
Ferry Revenue Management Problem

Chris Bayliss, Julia Bennell, Christine Currie,
Antonio Martinez-Skyora, Mee-Chi So

OR58, September 2016

This work was funded by the EPSRC under grant number EP/N006461/1

Talk Overview
1) Problem description

2) Loading simulator

3) Dynamic pricing formulation

4) Results

5) Conclusions and future work

2

PROBLEM DESCRIPTION

3

Problem description
Objective: derive a dynamic pricing policy that maximises the expected revenue
from the sale of vehicle tickets on a ferry

• Constraint: Limited capacity which depends on packing

• Customers

– Arrive at random during the selling season (beginning 6 months before
departure)

– Customer willingness to pay is related to vehicle size and time until
departure

– Their vehicles vary in shape and size

Case study
• Red Funnel: regular crossings between Southampton and the Isle of Wight

• Vehicles: private vehicles (cars, vans, caravans, trailers, mopeds, …) and
commercial freight vehicles

• Decks:

– Car deck (cars and motorbikes only)

– Main deck (all vehicle types)

– 2 Mezzanine decks (movable dependent on traffic)

• Lanes: parking in lanes is always possible on the car deck but not on the main
deck due to wide vehicle types

5

Goal is to solve a real world instance

• The dimensionality of the proposed formulation is the number of vehicle types
• The number of possible vehicle combinations also rises exponentially with ferry capacity

• We can solve this instance exactly for up to 5 vehicle types using IP for packing and dynamic
programming

Overview

7

Loading
simulator

Simulated
annealing

Dynamic
program

Optimal dynamic
pricing policy

Observation of
loaders

Packing rules
Transition
functions

Selling season
simulator (testing)

LOADING SIMULATOR

8

Demo – wish me luck!

9

Loading Simulator
• Simulates the online vehicle ferry loading process

• Loading rules:

– Optimised by simulated annealing

– In future we will develop rules that mimic real loading

• Measures the remaining space on each deck after each vehicle is loaded

• Accounts for the parking gaps that are required for passengers to exit (and
subsequently re-enter) the vehicle decks

10

Optimising the loading rules
• The loading algorithm is used to select which vehicle to load next and where

• Possible positions are generated and ordered in terms of a weighted sum of a
number of efficiency based criteria

• Example attributes:

– Distance from the far end of the ferry

– Tightness (vehicle width/parking position width)

– Parking loss (space lost due to staggered parking)

• Weights are set via simulated annealing

11

DYNAMIC PRICING FORMULATION

12

Notation
• T : Number of time intervals in the selling season

• t : Time period, ݐ ∈ ܶ, ܶ െ 1,… , 1,0

• I : Set of vehicles types

• λ : Arrival rate for vehicle type ݅ ∈ ܫ

• ܲ ൌ ܲ,	 ଵܲ, … , ܲ௫ : set of available price points

• :,,௧ߙ Probability that a customer with vehicle type ݅ ∈ ܫ accepts price ∈ ܲ
at time period ݐ ∈ ܶ, ܶ െ 1,… , 1,0

• ܺ : Current state/accepted vehicle mix/sales history

• ܺᇱ : Next state (after a sale)

Formulation

• ௧ܸ,௦: optimal expected revenue from period ݐ to the end of the selling
season if the current state is X

• Yields the price points for all vehicles, times and states that maximise the
revenue

௧ܸ,௦ ൌ max
∈

ߣ௩ ,,௧ߙ ௧ܸିଵ,ி ௦, 1 െ ,,௧ߙ ௧ܸିଵ,௦
∈ூ

ߣ ௧ܸିଵ,௦

Simheuristic Approach
• States are defined by remaining area

• Define transition functions to specify the amount of space used by each
vehicle type

• The transition functions are derived from a custom built ferry loading
simulator

16

State transitions
• the ,(௨ݎ) Current state, defined as the remaining space on the upper deck :	ݏ

remaining space for low vehicles (ݎ) and the remaining space for high vehicles
on the main deck (ݎ)

• ܨ ,ᇱ: Next stateݏ ,ݏ ݅ denotes how the next state depends on the current state
and which vehicle has arrived and purchased a ticket for the ferry

17

ݏ ൌ ,௨ݎ ,ݎ ݎ

ᇱݏ ൌ ܨ ,ݏ ݅ ൌ ൞
௨ݎ ← ௨ݎ െ ௨݂ ݅ : if	vehicle	fits	on	the	upper	deck

ݎ ← ݎ െ ݂ ݅
ݎ ← ݎ െ ݂ ݅ : ݁ݏ݅ݓݎ݄݁ݐ

Numerical examples of state transitions
• Empty ferry state: s ൌ 800,1000,600 (units in metres squared)

• Selling season transitions

– Car purchases a ticket: 800,1000,600 െ 15,0,0 ൌ 785,1000,600 , i.e. the
car uses 15m2 on the upper deck

– Then a van purchases a ticket: 785,1000,600 െ 0,20,10 ൌ 785,980,590 ,
i.e. the van is parked on the main deck half under a mezzanine deck

– Then a large freight vehicle purchases a ticket: 785,980,590 െ 0,60,60 ൌ
785,920,530 , the large freight vehicle is parked in high vehicle space (not

under a mezzanine deck), which fully overlaps with the space available to low
vehicles

18

RESULTS

19

Deck configurations and demand scenarios

20
High car demand
2 Mezzanine decks

Medium demand
1 Mezzanine deck

High freight demand
0 Mezzanine decks

Total revenues for different ferry configurations in
different demand scenarios
Demand scenario 0 Mezzanine

decks
1 Mezzanine deck 2 Mezzanine

decks
Non-fixed deck
configuration

High car 67.028 70.590 64.713 71.332
Medium 62.392 65.448 58.807 65.579
High freight 57.449 53.536 42.219 57.752

21

Demand scenario Best Deck Configuration
(% revenue compared to full dynamic pricing)

High car 96.5%
Medium 98.5%
High freight 97.6%

Capacity based pricing

22

Demand scenario Best Deck Configuration
(% revenue compared to full dynamic pricing)

High car 96.5%
Medium 98.5%
High freight 97.6%

• The capacity based pricing policy has a single price for each vehicle type for
each level of remaining space

• Derived from the optimal dynamic pricing policy using the expected demand
trajectory

Non-fixed ferry configuration solution use frequencies
Demand scenario 0 Mezzanine decks 1 Mezzanine deck 2 Mezzanine decks

High car 42 34325 348

Medium 34 29417 0

High freight 20787 12 0

23

Piecewise value function approximation

24The values of intermediate states are interpolated

Interval size effects: discretization

25

Solution time graphs looks the same as this
Min:3 minutes (3 million prices)
Max:2 hours (90 million prices)

64.12 for the coarsest discretisation
65.09 for the finest discretisation

Prices

26

CONCLUSIONS AND FUTURE WORK

27

Conclusions
• This approach should (at the very least) make the ferry companies’ models of

vehicle capacity more realistic.

• Explicitly models the effect of the packing method on the ferries’ capacity.

• The use of the loading simulator to track the state in the selling season allows the
approach to take the exact effects of the realised vehicle demand scenario into
account.

• Allows the realised demand to determine what ferry configuration will be most
profitable

28

Future work
• Run simulated annealing for longer with more repeats and on more demand

scenarios to further improve the loading algorithm parameters

• Fit the packing rules to actual loaders using simulated annealing

• Compare to existing practices (which do not include the time remaining until
departure)

• Improve the transition value estimation

• Non-linear interpolation approach could make coarse discretisation work as well
as a fine discretisation

29

QUESTIONS?

30

Space use dependence upon remaining space

31

When the ferry is
empty vehicle are
generally loaded
efficiently without the
creation of unusable
gaps

When the ferry is full
vehicles tend to cause
unusable gaps

The transition functions capture such effects.
A transition function graph will be given later on.

Overview

32

1) Ferry loading
simulator built to
reflect actual ferry

operator

2) Packing rules
optimised by

simulated annealing

3) Non-price constrained off-line
arrival process simulated in the

loading sim to derive information
about vehicle space use dependent
upon the level of remaining space

4) Remaining deck
space discretisation

5) State transitions
derived for each

vehicle type and each
discrete level of
remaining space

using data from 3)

6) Dynamic
programming

formulation used to
derive the optimal
dynamic vehicle
pricing policy

7) Operational selling
season simulation in

which the loading
simulation is used to

find the current
remaining space state

for the realised
combination of

accepted vehicles

Simulated annealing for optimising the loading rules
• Let

– R: Online remaining space after loading all queued vehicles

– G: Number of unreachable gaps in which a minimum dimensioned vehicle
fits

– U: Vector containing counts of the unloaded queued vehicles of each type

– W: Vector containing the weights of the

– c: weight given to minimising unreachable gaps

– d: vector of penalties for not loading vehicles (one for each type)

• Objective:	max
ௐ

ܴ െ ܩܿ െ ݀ · ܷ
33

Simulated annealing algorithm details
• The weight given to each attribute varies linearly between two values dependent

upon the level of remaining space

• This approach allows the behaviour of the loading algorithm to vary over the
course of loading

• During the SA algorithm one or both of the weight corresponding to a particular
attribute are modified

• The parameter modifications can be random or +/- additive or multiplicative
steps

• The probability of random parameter modification decreases over the course of
the algorithm

34

Price acceptance model
• Sigmoidal in price non-linear (or linear) in time

• ,௧ߙ ൌ ݂ܿ 1 െ ଵ

ଵା
షೖ

ಾೌೣషೝబ
ൈ ܽ ܾ െ ܽ 1 െ ௧

்

• ݂ܿ ൌ ଵ

ଵି భ
భశೖ·ೝబ

Parameter Interpretation
a The probability of price acceptance at the beginning of the selling season at

price 0

b The probability of price acceptance at the end of the selling season at price 0

c Curvature of the effect of time on the probability of price acceptance

k Steepness of the midpoint of the sigmoidal price part of the function

pr0 Relative position of the midpoint of the sigmoidal part of the function

pMax Maximum price a random customer will pay

Transition values for 0 mezzanine deck case

36

When little space
remains on the main
deck:
• Some vehicle types

can no longer be
added

• Some vehicle types
have the effect of
recapturing lost
space, as vehicles
will packed
differently if there
are different
numbers of vehicles
to be packed

In general the amount
of space used by each
vehicle type increases
as remaining space
decreases, because
packing becomes
more awkward

Experimental results
• 3 demand scenarios

– High car demand

– Medium (car and freight) demand

– High freight demand

• 3 ferry configurations

– 0 Mezzanine decks

– 1 Mezzanine deck

– 2 Mezzanine decks

• Approach applied to each combination of the above
37

Another picture

38

In a two Mezzanine deck
scenario the loading algorithm
rules try to place low vehicle
under the mezzanine deck.

Sometime this causes unused
space.

The main point is that
Mezzanine decks are only
appropriate in situations where
low vehicle demand is
especially high and high vehicle
demand is especially low

As deck decision depend on
demand scenarios we segment
demand scenarios in terms of
ratios of spatial demand of low
and high vehicles and derive
loading rules and then pricing
policies for each of these.

A solution is derived for each
demand scenario in each ferry
configuration

• A table of expected revenues for each demand scenario with each ferry
configuration

• And possible another column where the configuration is not fixed but instead the
price from the configuration with the highest expected future demand is used.

• In each case the demand scenario is known, in some cases statistical fluctuations
mean that the demand scenarios overlap, allow us to take advantage of the
addition car capacity that the Mezzanine decks offer.

39

Finding the Exact Solution
• Exact optimal dynamic pricing formulation

– Integrates packing and dynamic pricing

– Integer programming approach to solve the packing problem (1-D bin-
packing formulation)

– The states of the dynamic program consist of the set of all possible vehicle
mixes that could fit onto the ferry

– Becomes intractable for more than a handful of vehicle types

40

